Frage von frost1989, 21

Warum wird bei der Aufgabe der komplexe Strom mit j erweitert?

Hallo,

ich verstehe nicht warum das gemacht wird. um j aus dem Nenner zu eliminieren?

Aber dann erweitert es man doch mit dem komplex konjugiertem....

Expertenantwort
von PWolff, Community-Experte für Mathematik, 10

Genau darum.

Eine komplexe Zahl z mit ihrem konjugiert komplexen conj(z) multipliziert ergibt eine reelle Größe.

Damit hat man dann einen reellen Nenner und alles imaginäre steht im Zähler. Dadurch kann man den Ausdruck als Summe von Realteil und j * Imaginärteil schreiben:

z = Re(z) + j Im(z)

Antwort
von Geograph, 8

Bruch mit komplexen Termen in Zähler und Nenner:

(a + jb) / (c + jd)   | erweitern mit  (c - jd) / (c - jd)   
= ((a + jb) • (c - jd)) / ((c + jd) • (c - jd))

(c + jd) • (c - jd) << mit 3. binomischer Formel und j² = -1 
= c² - (jd)² = c² - (-1) • d² = c² + d²

(a + jb) / (c + jd) = ((a + jb) • (c - jd)) / (c² + d²) 
= (ac + bd + j • (bc - ad)) / (c² + d²)

Damit ist nur noch der Zähler komlex

Antwort
von HarryHirsch4711, 9

Stark vereinfacht:

Der komplexe Strom setzt sich aus zwei Komponenten zusammen und zur Unterscheidung.

genauer siehe z.B. https://de.wikipedia.org/wiki/Komplexe_Zahl

Keine passende Antwort gefunden?

Fragen Sie die Community

Weitere Fragen mit Antworten