Frage von precursor, 62

Warum ist lim h --> 0 mit (2 ^ h - 1) / h = ln(2)?

Würde ich gerne wissen ;-))

Hilfreichste Antwort - ausgezeichnet vom Fragesteller
von ausdertonne, 29

2^h = e^(h*ln 2)

e^(h*ln 2) = 1 + h*ln 2 + h^2 * ln2/2 + ...

(e^(h*ln2)-1)/h = ln2 + h* ... + h^2* ... usw

Im Limes verschwinden alle terme höherer Ordnung in h

Kommentar von precursor ,

Vielen Dank für deine Antwort !

Schön zu sehen, dass es auch ohne l´Hospital geht ;-))

Expertenantwort
von Willibergi, Community-Experte für Mathe & Mathematik, 31

Ergibt sich bei einer Grenzwertberechnung ein Term der Form 0/0 oder ∞/∞, so können Zähler und Nenner differenziert werden, wobei sich der Grenzwert nicht ändert: Gesetz von L'Hôpital.

Leite also Zähler und Nenner einfach ab. ;)

Ich hoffe, ich konnte dir helfen; wenn du noch Fragen hast, kommentiere einfach. 

LG Willibergi 

Kommentar von precursor ,

Vielen Dank für deine Antwort !

Kommentar von Willibergi ,

Gern geschehen! ;)

LG Willibergi 

Antwort
von AnglerAut, 45

Regel von L`Hospital:

Die Ableitung vom Zähler / Die Ableitung vom Nenner

Kommentar von precursor ,

Ok, danke, ich schaue mir l´Hospital mal an.

Antwort
von Luksior, 38

Nimm einfach l'Hospital und stell fest, dass lim -> 0 mit (2^h-1)/h gleich lim -> 0 mit ln(2)*2^h = ln(2) ist.

Die Regel von l'Hospital besagt, dass der Grenzwert der Funktion g(x)/h(x) gegen x0 gleich dem Grenzwert von g'(x)/h'(x) gegen x0 ist, wenn g(x)/h(x) unbestimmt ist (also z.B. nicht x/2 gegen 0, das wär auch so berechenbar).

Kommentar von precursor ,

Ok, danke, ich schaue mir l´Hospital mal an.

Keine passende Antwort gefunden?

Fragen Sie die Community