Vektoren und Rechnungen im 3 dimensionalen Koordinatensystem erklären?

... komplette Frage anzeigen

1 Antwort

Nur zur Übersicht, S = Ein Punkt der Geraden, a * r = Geradenvektor mit einem Skalar und P = Irgendein Punkt im Raum.

Deine Geradegleichung hat eine Form von y = S + (a * r)

Wenn du jetzt testen möchtest, ob der Punkt P auf der Geraden liegt, dann musst du herausfinden, ob es eine Lösung für S + (a * r) = P bzw. a * r = P - S gibt.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von slon333
21.02.2016, 15:00

Also als Beispiel y = (1, 1, 1) + a * (1, 0, 0) und du willst nun wissen, ob sich der Punkt (2, 1, 1) auf der Geraden befindet. Die Frage ist, gibt es eine Lösung für a, sodass y = (2, 1, 1) ? Die Antwort lautet ja, nämlich für a = 1 --> (1, 1, 1) + 1 * (1, 0, 0) = (2, 1, 1)

0

Was möchtest Du wissen?