Frage von OwenJerichow, 23

Schritte zur Vereinfachung des Terms?

Liebe Community,

ich habe die Aufgabe, folgenden Term so zu vereinfachen, dass im Nenner keine Wurzel steht:

(2^(1/2)+3^(1/2))/(2^(1/2)-3^(1/2))

oder anders: der Zähler (Wurzel aus 2 + Wurzel aus 3) geteilt durch den Nenner (Wurzel aus 2 - Wurzel aus 3).

Das Ergebnis lautet -(5+2*6^(1/2)).

Kann mir jemand bei den Vereinfachungsschritten auf die Sprünge helfen?

Expertenantwort
von Willy1729, Community-Experte für Mathematik & Schule, 9

Hallo,

erweitere mit (√2+√3)/(√2+√3)

Dann ergibt der Nenner gemäß der dritten binomischen Formel 2-3=-1, denn (a-b)*(a+b)=a²-b²

Im Zähler hast Du (√2+√3)² oder 2+2*√2*√3+3=5+2*√6.

Herzliche Grüße,

Willy

Keine passende Antwort gefunden?

Fragen Sie die Community