Frage von Leborn, 34

Quadratische Funktionen Hausaufgaben a,b,c?

Hallo Leute ich schäme mich fast schon das hier zu fragen da ich das ganze vor 2 Jahren schon mal auf meiner alten Schule hatte aber jetzt in der elften wiederholen wir grade quadratische Funktionen und ich peile garnicht mehr. Habe mich schon um Nachhilfe gekümmert das Problem ist das ich einen Teil der Hausaufgaben gar nicht mehr peile und das sind die drei gleiche folgenden Aufgaben. Kann die mir bitte einer mir Rechenweg unten in die Antworten schreiben ich bin mündlich schon nicht gut und wenn ich jetzt Anfange keine Hausaufgaben zu machen wird das nichts mehr mit der 3....

Bestimmen Sie die Nullstelle der Funktion f. a) f(x)= x[im Quadrat] - 4 x - 21 B) f(x)= 3 x[im Quadrat] - 10 x + 6 C) f(x)= 0,2 x[im Quadrat] + x + 1,5

Tut mir leid ich weiß das das so mega einfach ist aber ich habe einfach alles wieder vergessen:(

Danke schon mal im voraus

Antwort
von gilgamesch4711, 3

  Schau mal, was Pappi alles weiß.

https://de.wikipedia.org/wiki/Satz_%C3%BCber_rationale_Nullstellen

   Der Satz von der rationalen Nullstelle ( SRN )

   Naa; hast du dich von deinem Schock erholt?

   Die Behauptung nämlich von Wiki, der SRN stamme von Gauß, ist eine dreiste Fälschung; der SRN wurde erst so um 1990 im Internet entdeckt.

   Hey ran an den Feind; sei nicht so schlafmützig. Frag doch mal deinen Pauker, ob er überhaupt je vom SRN vernommen hat; schließlich ist Gauß ja Kult.

   Und dann erzählst du ihm, die einzigsten ernst zu nehmenden Algebrabücher seien Artin und v.d. Waerden ( 1930 ) ( Das kennt der natürlich. ) Er soll mal nachforschen, ob diese Autoren etwas vom SRN gehört haben ...

   In dem Konkurrenzportal ===> Matheloung wurden schon Aufgabenzettel gepostet, welche unzweideutig belegen, dass die Herren Profs jeden Falls keinen Schimmer vom SRN haben ...

  Kannst du dich noch erinnern, wie man beweist, dass Wurzel ( 2 ) irrational? ( Steht überall im Internet. )

   Halt stop; und jetzt wiederhole den Beweis mit dem SRN .

   Den Moment der Erleuchtung bezeichnet der ===> Zen Buddhismus als ===> Satori . DAS wirst du dein Leben nicht mehr vergessen.

    Und Gauß hat von dem allem nichts gewusst???

    Und jetzt zu deiner Gleichung:

    x  ²  -  p  x  +  q  =  0     (  1a  )

     p  =  4  ;  q  =  (  -  21  )    (  1b  )

      Wir lösen das jetzt mit Hilfe des geschmähten Stiefkindes, des Satzes von Vieta

     q  =  x1  x2   =  (  -  21  )     (  2a  )

     du hast bitte verstanden; Der SRN verlangt, dass wir das Absolutglied 21 in ( 2a ) in seine GANZZAHLIGEN Teiler zerlegen. die 21 hat die truviale Zerlegung 21 = 1 * 21 so wie die nicht triviale 21 = 3 * 7 ; ( hinreichende )Probe ist Vieta p

         p  =  x1  +  x2    (  2b  )

    |  x1  |  =  1  ;  |  x2  |  =  21  ;  |  p  |  =  20     (  3a  )

    |  x1  |  =  3  ;  |  x2  |  =  7  ;  |  p  |  =  4         (  3b  )    ;  ok

    Jetzt noch das Vorzeichen richtig drehen; und fertig ist die Laube.

Antwort
von SushiKing27, 10

Google mal die Mitternachtsformel! Mit der kannst du das berechnen.

Kommentar von Leborn ,

Danke erstmal aber was ist jetzt null x1 oder x2?

Kommentar von SushiKing27 ,

Beide. Eine quadratische Gleichung kann entweder keine, eine oder zwei Nullstellen haben.

Kommentar von Leborn ,

Wie kann eine Funktion zwei Mal eine Achse schneiden?

Kommentar von 0Ichputzhiernur ,

Nun weißt du überhaupt noch wie eine quadratische Funktion aussieht? xD

Natürlich können Funktionen eine Achse zweimal schneiden. Eine Ausnahme stellt zum Beispiel die Lineare Funktion da, die schneidet höchstens einmal die x-Achse oder sie liegt auf ihr. Aber ein beispiel für eine die sogar unendlich oft schneidet ist die Sinus Funktion :)

Ich glaube es würde dir helfen, die Graphen der Funktionen anzusehen :)

Keine passende Antwort gefunden?

Fragen Sie die Community

Weitere Fragen mit Antworten