Mathematik Wurf nach oben?

... komplette Frage anzeigen

4 Antworten

Die Abschusshöhe ist die Höhe zum Zeitpunkt 0.

s(0)=140

Nun musst du ermitteln, wann diese Höhe wieder erreicht wird.

Es gilt:

140=s(t)

-5t²+60t+140=140 | -140

-5t²+60t=0

t*(-5t+60)=0

Schaffst du den Rest selber? (Tipp: Satz vom Nullprodukt)

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von Mackster
26.03.2016, 16:22

Danke! habs gelöst :D

0

Hallo,

Du kannst es noch einfacher haben.

Rauf geht's bei solchen Sachen immer wie runter. Die Kugel wird mit 60 m/s abgeschossen, wird immer langsamer, bis sie für einen Moment zum Stillstand kommt, danach fällt sie zurück und beschleunigt im selben Maß, wie sie zuvor abgebremst wurde. Du mußt also nur ausrechnen, wie lange die Kugel braucht, um im freien Fall auf 60 m/s zu beschleunigen, und das Ergebnis zu verdoppeln, weil sie diesen Weg ja hinauf und herunter beschreibt. Auf Abschußhöhe hat sie beim Herunterfallen nämlich wieder genau 60 m/s erreicht.

Da hier eine Fallbeschleunigung von 10 m/s² (das Doppelte der 5m/s²) aus der Gleichung) angenommen wird, sind nach 60/10=6 Sekunden die 60 m/s wieder erreicht. Die Kugel befand sich also 2*6=12 Sekunden in der Luft.

Herzliche Grüße,

Willy

Antwort bewerten Vielen Dank für Deine Bewertung
s(t)= 140 + 60t -5t²

Das heißt korrekterweise wohl

s = f(t) = 140 + 60t -5t²

Dann setzt Du für s 140 ein
140 = 140 + 60t -5t²
Und stellst nach t um.
Antwort bewerten Vielen Dank für Deine Bewertung

Einfach Gleichung 140=140+60t-5t^2 lösen.

Der 140 auf der linken Seite kommt zustande, da die Kugel ja wieder auf 140 Metern nach einer bestimmten Zeit sein soll.

Antwort bewerten Vielen Dank für Deine Bewertung
Kommentar von leon31415
26.03.2016, 16:16

und dann einfach Produkt-Null-Satz anwenden!

3