Lösungsmenge über die grundmenge bestimmen?

... komplette Frage anzeigen

2 Antworten

Du musst einfach nur die Gleichung durch Umstellen lösen und diejenigen Lösungen angeben, die rational sind (ist hier der Fall x = 5/8). Multiplizier die Klammern aus (pass auf bei der 2. und 3. Klammer, da stehen Minuszeichen vor, weshalb du die Vorzeichen umdrehen musst) und stell nach x um.

Antwort bewerten Vielen Dank für Deine Bewertung

Hallo!

Die Lösungen einer Gleichung über einer Grundmenge G zu finden bedeutet, dass du nur diejenigen Lösungen betrachten sollst, die aus G stammen.

Beispiel: Die Gleichung x² - 2 = 0 über der Grundmenge G = R (reele Zahlen) hat als Lösungsmenge L = {+sqrt(2), -sqrt(2)}. Über der Grundmenge G = Q (rationale Zahlen) ist die Lösungsmenge leer, das heißt L = {}, weil sqrt(2) und -sqrt(2) keine rationalen Zahlen sind.

Anderes Beispiel: Die Gleichung x^2 + 1 = 0 besitzt über der Grundmenge G = R keine Lösung, weil das Quadrat jeder reellen Zahl positiv ist. Über der Grundmenge C (komplexe Zahlen) existieren jedoch sogar zwei Lösungen.

Ein Verfahren, jede Gleichung über einer Grundmenge G, die Teilmenge von R ist, zu lösen: Bestimme zuerst die Lösungsmenge L_R über der Grundmenge R und schneide die Lösungsmenge dann mit der Grundmenge. Das heißt, die gesuchte Lösungsmenge über G ist L_G = L_R ∩ G.


LG girlyglitzer

Antwort bewerten Vielen Dank für Deine Bewertung

Was möchtest Du wissen?