Frage von Duundichcool, 74

Kann mir jemand sagen,warum die dritte Wurzel von 5 ein unendlicher Dezimalbruch ist :)?

Antwort
von gfntom, 34

Der Beweis, dass 3 Wurzel (5) irrational ist, kann ähnlich erfolgen, wie der Beweis, dass Wurzel 2 irrational ist.

Annahme: 3. Wurzel (5) ist rational, kann also durch einen Bruch a/b dargestellt werden, bei dem a und b teilerfremd sind.

Es gilt: 

3. Wurzel (5) = a/b
5 = a³/b³
5*b³ = a³ -> a muss durch 5 teilbar sein, also sei a = 5 * c
5*b³ = 5³*c³ = 125 * c³
b³ = 25 * c³ -> b muss durch 5 teilbar sein (sogar durch 25)
dies ist ein Widerspruch zur Bedingung, dass a und b teilerfremd sind.
Es gibt also keinen Bruch, der 3.Wurzel (5) exakt darstellt. Demnach ist der Wert irrational.

Expertenantwort
von Willibergi, Community-Experte für Mathe, Mathematik, Schule, 19

Die Kubikwurzel einer Zahl, die keine Kubikzahl ist, ist immer irrational, hat also unendlich viele (nicht-periodische) Nachkommastellen.

Somit kann sie nicht als Bruch zweier ganzer Zahlen dargestellt werden (das Mengenzeichen ℚ für die rationalen Zahlen steht deshalb auch für Quotient).

Ich könnte dir das jetzt mathematisch beweisen, aber das ist wahrscheinlich nicht die Art von Antwort, die du dir erhoffst.

Ich will es dir erklären:

125 ist eine Kubikzahl, denn 5³ ist 125 und ³√125 ist somit 5.

Es gibt eine ganze Zahl, die mit 3 potenziert wieder 125 ergibt, nämlich 5.

Aber auch eine rationale Zahl reicht uns schon, denn 0,125 ist auch eine Kubikzahl, da 0,5³ = 0,125.

Aber es gibt einfach keine rationale Zahl, die mit 3 potenziert 5 ergibt.

Da wirst du ewig suchen müssen und keine finden.

Die Kubikwurzel aus 5 liegt zwischen 1 und 2, denn 1³ = 1 und 2³ = 8.

Diese Intervallschachtelung kannst du so lange fortführen wie du willst, du wirst zwar auf die Dezimaldarstellung 1,7099759 oder sogar 1,7099759466767 kommen, aber:

1,7099759³ = 4,99999590549541302479

und

1,7099759466767³ = 5,000000000000026409554739456349888239663

Keine rationale Zahl ergibt mit 3 potenziert genau 5. Manche Zahlen ergeben ungefähr 5, manche sogar fast genau 5, aber keine rationale Zahl ergibt mit 3 potenziert ganz genau 5.

Das musst du dir merken. Eine solche Zahl gibt es im rationalen Zahlenbereich nicht (aber im reellen).

Zusammenfassend kann man sagen:

Es gibt kein rationales x, für das gilt x³ = 5!

Mathematisch ausgedrückt: ∄x∊ℚ: x³ = 5

Ich hoffe, ich konnte dir helfen; wenn du noch Fragen hast, kommentiere einfach.

LG Willibergi

PS: Falls du es genau wissen willst: 

1,7099759466766969893531088725438601098680551105430549243828617074442959205041732162571870100201890022045032893904540180871975766468007853747138938944150323331560314622649791507043419693392331556442948853995290819827739186320965662995758780116286757879110052836352061669998102125155418320247714835878190657484446984173464201963041298204734890260768230890717312687715144515375743439720227229969986779233907135532335626211152356872998121516645222945037398063152646410143280889227495462756894258712974824203363484172219926324065337546466662004304915440060892721164046962824861310786044175779997779144665348074625079926299584741830468405398548788159427282354748502976167685512496004312060609470885587942956036479859692162581748126195221402426628344487955972210047807361025407525208879498664957034983029822045129304343467219922780082168158541969442506136121500428842312288836099248335331034101486578540635641668604212590212402656769351270852853960362710307916348031212198609664583373227186454049794320526462788444840608590561491344493472503276640424694167241859321250935194964121451002921463522366997014761629490655194902806561116971978204310973671051495172825311208813222844372014365470469802820395071114165242047788531657231117443778885081074386339293986163163581452215266603012000186464376513738314723048732810006058694018399289616400150808073239708667898460620369740102792994014826858001921146707205672229610262809993874286657458965909635958771129688780376425966305906161900829176570466827522209772188625708101712403577445257046130163612230168501334012764035932143289224499398474326694667897032741930726370018291589690072913149732414425685956161590450593948320124566709041607248000776215109926490974804189638535604925486964968391505119217992116487843281846286582192208916131625430023976736627367395794980411703091336384056413³  5

Antwort
von AlexKley, 29

Nun was du meinst ist eine irrationale Zahl.

Stell es dir mal so vor:

Die Wurzel aus 2 ist auch eine irrationale Zahl.
Sie ist etwa 1,4 , aber halt 1,4 ins Quadrat ist nur 1,96!
1,5 ins Quadrat wäre allerdings mit 2,25 zu groß. 
Also nehmen wir noch eine Nachkommastelle und haben 1,41 
Aber auch 1,41 ins Quadrat ist mit 1,9881 wieder zu klein, und 1,42 ins Quadrat wäre wieder zu groß. 

Wir können noch eine Stelle nehmen und erhalten 1,414. Das ist allerdings auch noch nicht genau die Wurzel von zwei. Diese können wir mit einer endlichen Zahlenfolge auch nicht schreiben, sondern können uns nur dieser Zahl annähern. Je mehr Nachkommastellen wir nehmen, um so genauer trifft unsere Zahl die Wurzel von 2, erreichen tun wir sie so aber nie ganz.

Antwort
von Roach5, 7

Die meisten direkten rigorosen Beweise für Irrationaität sind sehr unhandlich, für Nichtstudenten unverständlich und wahrscheinlich nicht wonach du suchst. Ich gebe dir deshalb jetzt einen intuitiven Beweis, der nicht komplett rigoros ist, sich mit etwas Mühe aber rigoros machen lässt, also ein völlig legitimer Beweis ist.

Die eigentliche Arbeit ist es, sich klarzumachen, dass folgendes gilt: Ist q eine rationale Zahl und keine ganze Zahl, so sind q², q³,... (alle natürlichen Potenzen von q) auch keine ganzen Zahlen. Das machst du dir klar, indem du q = a/b wählst und dir klarmachst, was es bedeutet, dass q ganzzahlig ist: b ist ein Teiler von a. Wenn b aber kein Teiler von a ist, dann ist b² auch kein Teiler von a², b³ kein Teiler von a³ usw. (Warum? Tip: Fundamentalsatz der Arithmetik, das ist jetzt der weiterführende Stoff, von dem ich nicht weiß, ob du ihn willst/brauchst).

Wenn du das weißt, ist sofort klar: Ist die n-te Wurzel einer ganzen Zahl k keine ganze Zahl, ist sie irrational. Anders formuliert: Ist k keine n-te Potenz, so ist die n-te Wurzel von k irrational. Bedeutet, alle Quadratwurzeln von nicht-Quadratzahlen sind irrational, alle Kubikwurzeln von nicht-Kubikzahlen sind irrational usw.

Folglich bemerken wir, dass 5 keine Kubikzahl ist (1³ < 5 und 2³ > 5), also ist die dritte Wurzel auf 5 irrational.

LG

Antwort
von Mikkey, 17

Wäre es ein endlicher Dezimalbruch, müsste die Dezimalschreibweise mit irgendeiner Ziffer "n" (1 <= n <= 9) an der m-ten Stelle nach dem Komma enden.

Bildet man das Quadrat (also 5), findet sich die Ziffer n² aber an der 2m-ten Stelle hinter dem Komma wieder, die ist aber von Null verschieden.. Das Quadrat ist also nicht 5.

Antwort
von KMorgen, 34

Da gibt es kein warum also nicht wirklich....es ist halt so....
Man kann höchstens sagen das fünf ja eine primzahl ist und es deshalb so ist

Kommentar von Willibergi ,

Man kann höchstens sagen das fünf ja eine primzahl ist und es deshalb so ist

Nein, das ist Unsinn.

12 ist keine Primzahl und trotzdem ist ³√12 irrational.

Mit Primzahlen hat das nichts zu tun.

LG Willibergi

Kommentar von Roach5 ,

Naja, in gewisser Weise schon, es ist nur sozusagen eine Atombombe, die auf eine Mücke geworfen wurde. Eine Primzahl ist insbesondere keine Kubikzahl, und deshalb ist die dritte Wurzel von Primzahlen irrational (generell jede Wurzel).

Kommentar von Willibergi ,

Mit meinem Kommentar war nur gemeint, dass nicht jede Kubikzahl eine Primzahl ist.

Dass x³ keine Primzahl ist, ist klar.

LG Willibergi

Keine passende Antwort gefunden?

Fragen Sie die Community

Weitere Fragen mit Antworten