Frage von Xuleb, 32

Kann man mit dem Vierer-Impuls "normal" rechnen?

Hallo zusammen! Ich wollte wissen, ob man mit dem Vierer-Impuls genauso wie mit dem klassischen umgehen darf, also Addieren/Subtrahieren (innerhalb eines Inertialsystems), Betrag ermitteln etc.

Und wenn das zutrifft, gilt dann die Lorentz-Transformation auch für Summen von Impulsen (d.h. wenn ich eine Summe in ein anderes Inert.-Sys. transformiere?)

Und was bedeutet die Multiplikation von kovariantem und kontravariantem Vierer-Impuls?

Antwort
von PhotonX, 23

Ja, darf man! Die Lorentz-Trafo ist linear, gilt also auch für Summen von Vierer-Vektoren. Der Betrag wird allerdings berechnet als p^2=(p^0)^2-(p^1)^2-(p^2)^2-(p^3)^2=p_µ p^µ, also genau das Produkt zwischen dem ko- und dem kontravarianten Vierer-Impuls.

Expertenantwort
von SlowPhil, Community-Experte für Physik, 13

Ich wollte wissen, ob man mit dem Vierer-Impuls genauso wie mit dem
klassischen umgehen darf, also Addieren/Subtrahieren (innerhalb eines
Inertialsystems), Betrag ermitteln etc.

Man kann. Die Summe oder Differenz zweier Lorentzvektoren ist wieder ein Lorentzvektor - auch wenn dieser dann vielleicht keinen direkten physikalischen Sinn ergibt, wie etwa die Summe zweier Vierergeschwindigkeiten.

Der Hinweis »innerhalb eines Inertialsystems« erübrigt sich, denn man addiert ja auch zwei Dreiervektoren in Darstellung derselben Basis und setzt nicht den ersten Summanden und dreht dann das Koordinatensystem, bevor man den anderen dazu addiert.

Der Betrag eines Vierervektors, natürlich auch des Viererimpulses p_µ, also

(1) |p_µ| = |p^µ| = √{p^µ·p_µ} = √{E²/c² – |p›·|p›}

ist selbstverständlich ein Lorentz-Skalar und damit Lorentz-invariant. Beim Viererimpuls ist das bis auf einen Faktor c schlicht die Masse respektive die Ruheenergie - die übrigens gleich 0 sein kann, nämlich bei allem, das sich exakt mit c bewegt.

Es ist ja eine Besonderheit der Minkowski-Metrik, dass sie eine uneigentliche Metrik ist. Daher gibt es auch die strikte Unterscheidung zwischen zeitartigen Vektoren wie p_µ oder der Vierergeschwindigkeit

(2) v_µ: v^µ·v_µ = γ²c² – γ²(|v›·|v›) > 0

und raumartigen Vektoren wie der Viererkraft

(3.1) F_µ: F^µ·F_µ = (P/c)² – |F›·|F› < 0

respektive, mit anderer Konvention für ko- und kontravariante Komponenten,

(3.2) F^µ·F_µ = |F›·|F› – P²/c² > 0.

Übrigens ist stets F^µ·p_µ = 0, ebenso wie auch a^µ·v_µ, d.h. die Änderung von Viererimpuls und -geschwindigkeit pro Eigenzeit τ ist stets orthogonal zu der entsprechenden Größe, sodass sich der Betrag niemals ändert. Auch die Addition einer endlichen Änderung der Vierergeschwindigkeit - eines raumartigen Vektors - zu einer Vierergeschwindigkeit kann diesen keinesfalls jemals raumartig oder lichtartig machen.

Kommentar von Astroknoedel2 ,

"Warum ist die relativistische Ortsvariable einsam ? Sie kann sich nicht gut in Gruppen einfinden. "

Kommentar von SlowPhil ,

Ich verstehe im Moment nicht, inwiefern sie das nicht gut können soll.

Kommentar von Astroknoedel2 ,

Das war ein Witz. War aber falsch, du hast Recht.
Die Norm der Differenz zweier Vierervektoren von zwei Weltpunkten ist lorentzinvariant. Ich habe das Ganze irgendwie verwechselt.

Kommentar von SlowPhil ,

Über Lorentz-Boosts, also spezielle Lorentztransformationen, die man als Drehung um eine rein räumliche Ebene bezeichnen könnte (und diese invariant lässt), kann man genau das sagen. Dies nutzt ein Einstein-Möchtegern-Widerleger dazu, die spezielle Relativitätstheorie ist inkonsistent anzuprangern, indem er behauptet, Lorentztransformationen seien nicht »transitiv«. dabei setzte allerdings Lorentz-Boosts und Lorentz-Transformationen gleich, und das ist unredlich. mit derselben Argumentation könnte man nämlich auch die Geometrie des dreidimensionalen Raum als inkonsistent brandmarken, denn die Drehungen um eine einzelne räumliche Achse bilden ebenfalls keine Gruppe.

Kommentar von SlowPhil ,

Mir fällt gerade auf, dass ich in den Gleichungen besser ‹p|p›, ‹v|v›, ‹F|F› geschrieben hätte. Wenn ich die Vektoren schon in Ket-Schreibweise schreibe, passt das besser. 

Keine passende Antwort gefunden?

Fragen Sie die Community