Frage von Lia933, 20

Hilfe beim integrieren, Stammfunktion gesucht?

Brauch mal eure Hilfe beim Integrieren, ich hab folgende Aufgabe:

https://www-user.tu-chemnitz.de/~rhaf/Aufgabensammlung/Einzelaufgaben/13_005-0.p...

verstehe aber den Rechenweg nicht so ganz. Wurde hier mit der Substitutionsmethode gerechnet oder wie kommt das Ergebnis zu Stande??

Hoffe mir kann jemand helfen :)

Antwort
von Willy1729, 8

Hallo,

gleich vorweg: Die letzte Zeile stimmt nicht. (x^-2)/-2 ist -1/(2x²) und nicht -1/(2x³). Da hat sich jemand vertippt.

Hier wurden einfach nur die Additions- und die Faktorenregel sowie die erste binomische Formel und Potenzgesetze sowie die Aufteilung eines Bruchs benutzt:

Zuerst wurde der Zähler ausmultipliziert: (x²+1)²=x⁴+2x²+1

Dann wurde der Bruch aufgeteilt, das heißt, jeder Summand wurde durch x³ geteilt:

x⁴/x³+2x²/x³+1/x³

Dann wurde gekürzt:

x+2/x+1/x³

Wenn Du eine Summe integrierst, kannst Du die Summanden einzeln integrieren und die Integrale anschließend addieren.

∫x=x²/2 ∫2/x=2*∫1/x=2*ln(x) 

∫1/x³=∫xˉ³=-1/(2x²)

Zum Schluß addierst Du alles und fügt noch die Konstante C hinzu, weil die Stammfunktion einer Funktion die ist, die, wenn sie abgeleitet wird, wieder die Funktion ergibt, eine Konstante ohne x beim Ableiten aber wegfällt und Du daher nicht wissen kannst, ob da mal eine gewesen ist, dann bist Du fertig:

x²/2+2*ln(x)-1/(2x²)+C

Herzliche Grüße,

Willy

Kommentar von Lia933 ,

wow vielen Dank für die schnelle und hilfreiche Antwort !! hast mir sehr weitergeholfen :) 

Kommentar von Willy1729 ,

Gern geschehen.

Keine passende Antwort gefunden?

Fragen Sie die Community

Weitere Fragen mit Antworten