Frage von maximilian1990, 21

Extemstellen bestimmen?

servus. kann mir jem. mit rechenweg erklären wie man auf die (4/48) kommt? grüße

Antwort
von Mayelle, 13
  • 1. Ableitung bilden
  • 2. Ableitung bilden

Also um eine Extremstelle zu berechnen brauchst du zunächst die 1. Ableitung. Damit kannst du die NS der 1. Ableitung bzw die x-Koordinate des Extrempunktes der normalen Funktion berechnen. (NS 1. Ableitung = x-Koordinate Extrempunkt(e))

Danach setzt du den x-Wert in die Ausgangsfunktion ein. Denn du hast ja schon den x-Wert herausgefunden und brauchst nur den dazugehörigen y-Wert.

Um herauszufinden ob es sich um einen HP oder TP handelt, muss man in die 2. Ableitung den/die x-Wert(e) einsetzen. Ist x größer als 0, dann ist es ein TP. Ist x kleiner als 0, ist es ein HP.

Antwort
von Inhout, 16

er sezt die 1. ableitung gleich null und löst nach x auf. hat damit den x wert. diesen sezt er indie grundunktion ein hat dadurch den y-wert

Expertenantwort
von everysingleday1, Community-Experte für Mathe, 8

f(x) = x² + 128 / x = x² + 128 x^(-1),

f '(x) = 2x - 128 x^(-2) = 2x - 128 / x²,

f ''(x) = 2 + 256 x^(-3) = 2 + 256 / x³.

Notwendige Bedingung für Extremstellen:

f '(x) = 0,

0 = 2x - 128 / x² ... | * x²

0 = 2x³ - 128 ... | + 128

128 = 2x³ ... | : 2

64 = x³ .... | dritte Wurzel aus der magischen Zahl 64 ziehen :)

4 = x

Hinreichende Bedingung für Extremstellen prüfen:

f ''(4) = 2 + 256 / 4³ = 2 + 256 / 64 = 2 + 4 = 6 > 0, folglich nimmt f ein lokales Minimum für x = 4 an.

abschlißend noch den Funktionswert bestimmen:

f(4) = 4² + 128 / 4 = 16 + 32 = 48.

Also hat der Graph von f den Tiefpunkt T( 4 | 48 ).

Antwort
von juliamaad, 21

um die extremstelle zu berechnen setzt du einfach die 1. ableitung =0 und berechnest die nullstellen was da für x rauskommt setzt du in die 2. ableitung ein, damit prüfst du ob ein hoch-, tief-, oder sattelpunkt vorliegt und das x setzt du dann in f(x) ein und so bekommst du y raus dann hast du den punk

ich hoffe du hast das so in etwa verstanden

Keine passende Antwort gefunden?

Fragen Sie die Community

Weitere Fragen mit Antworten